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Abstract—Green's functions for the field variables of a complete sphere subjected to normal surface
traction are obtained with “free space™ properties. Further, self-equilibrated singular solutions of
the variables associated with tangentially applied point loads and concentrated surface moments
are constructed. The solution formulac are derived within the framework of the improved theory
of thin shells and thus incorporate the effect of transverse shear in the equilibrium of the shell
clement. Despite the complex character of the solution, expressed in terms of complex Legendre
functions, the closed form of it reveals the effects of the new assumptions (presence of shear strains)
onto the singular behavior of the associated kernels. Numerical results for the field variables
demonstrate the differences between the two theorics, classical and improved.

INTRODUCTION

The complexity of the analysis associated with the study of shells has over the years been
dealt with the introduction of suitable auxiliary variables into the governing differential
equations. The advantage of such approach is that the system is reduced to a set of
uncoupled and/or coupled equations which are easier to deal with. In the improved theory
of shells the effect of the transverse shear deformation is included in the analysis. Even
though the basic equations of equilibrium are the same as in the classical theory, the
independent role of the angular rotations of the normal, 8, introduces two additional
variables which in turn upgrade the order of the governing differential system. Furthermore,
the shearing stress resultants, Q,, are the direct effect of the nonvanishing shear stress and
no longer a requirement for the overall equilibrium of the shell element.

The incorporation of the shear effect has been introduced in the analysis of plates by
Reissner (1947) and later by Naghdi (1956) in the deductions of differential equations for
thin elastic shells. The reduction of the primary system of equations of a shallow spherical
shell has been obtained by Kalnins (1961). A similar approach has been used by Prasad
{1964) in the derivation of a system of coupled equations in the transverse displacement W
and a set of suitable auxiliary variables of a nonshallow spherical shell. In the works of
Wilkinson and Kalnins (1966a, b) an equivalent system of equations to that in Prasad
{1964) was obtained. In their detailed analysis the nonsymmetric dynamic problem of an
open spherical shell was studied and results were obtained for the shell response under the
action of a horizontal force and moment. In Wilkinson and Kalnins (1966b) an exact
solution for the Green's function, represented by the solution to an arbitrarily located
normal concentrated load acting on an open spherical shell was derived. The effect of
transverse shear has also been considered by Delale and Erdogan (1979) in their study of
a cracked shallow spherical cap.

+ This paper is part of a doctoral dissertation of Nikolaos Simos submitted to the Graduate School of the
City University of New York in March 1988,
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The aim of this paper is the derivation of exact, closed form solutions of the Green’s
functions of the “free space™ type. Such form of the Green's function will be associated
with the complete sphere and it will be required to satisfy the overall equilibrium. Green’s
solutions have been obtained by Simmonds (1968) and Koiter (1963) for the nonshallow
classical theory of shells. Within the framework of the improved theory, Green's functions
have been presented by Nordgren (1963) for the thermoelastic problem of shallow shells.
Further, the scope of this analysis is to introduce singular solutions of closed form for
concentrated tangential loads and moments which would apply in a self-equilibrating
fashion. In the case of the “free space™ Green's function the unit concentrated normal load
is applied in the form of a Dirac Delta distribution accompanied by an axisymmetric normal
surface traction which ensures overall equilibrium. As has been discussed in Simos (1988),
the “physical™ role of the distributed surface traction is mathematically compatible with
the whole idea of free space Green’s function and it obtains its form directly from the
governing differential equation. The equilibrium requirement in the case of the unit tan-
gential load is satisfied with the application of a similar load at the opposite pole and in
the opposite direction together with a concentrated moment to eliminate the resulting
couple. The closed form solutions are in terms of complex Legendre functions and elemen-
tary functions. Such a representation appears suited to numerical evaluation. The singular
formulae expressions are evaluated in the vicinity of the pole with the help of the expansions
of the Legendre functions in the neighborhood of such point and comparisons are performed
with the analogous problems of the classical theory of shells. The most striking differences
in the character of the singularitics are observed in the transverse displacement W of the
normal point load and the shear resultant of the tangential load and moment. The character
of the singularitics is also compared with that of previous solutions.

Lastly, results of a number of shell problems are presented in comparison format with
the corresponding problems of the classical theory. These results show not only the cffective
point load neighborhood where transverse shear is important but also serve as justification
of the derived expressions of the shell variables.

SYSTEM OF GOVERNING EQUATIONS

According to the analysis performed by Prasad (1964), the governing equations of a
nonshallow spherical shell of middle surface radius R, Young’s modulus £ and Poisson’s
ratio g and thickness & are uncoupled with the introduction of the auxiliary variables U,
W, I and A which relate to the displacement vector as well as the angular rotations of the
normal. In the analysis, the primaury system of equations is reduced to a secondary system
of equations in terms of the new variables and the transverse displacement function W.
This secondary system, for the case of only normal surface traction g, being present, is
uncoupled into a set of two differential equations

VW p VW +p VW4 po W+ Lo[g,] = 0 (H
where
pa=3—p—k(l-p?). p:= l“—%yj +201 =) + k(1 — ) (u-3),
A L -0
k= lz—f% ¢= l2h;z=

and
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(v2+z)[v=+2— ala’]w =0. o))

k? = § corresponds to the coefficient of shear as defined in [1] and [2]. The remaining
auxiliary variables A, U and I are governed by the system of equations (A6)-(A10) in the
Appendix. Evaluation of W and W will lead to the determination of the complete set of the
system variables.

FUNDAMENTAL SOLUTIONS OF NORMAL SURFACE TRACTION

In constructing the fundamental singular solutions of the operators in (1) and (2) we
should require that such solutions satisfy not only the differential operators but also
demonstrate singular behavior at a unique point on the complete sphere. Also, with the
same argument used in Simos (1988) for the classical theory, the condition of equilibrium
in the vicinity of the pole and the vanishing of the tangential displacement and the rotation
vector at the pole must be satisfied by the fundamental solution without being introduced
a priori.

Consider the self-equilibrated normal surface traction ¢, applied over the middle
surface of a complete sphere and expressed in the axisymmetric form

4o = ! [ x __ 3 cos Y] 3

R 2nsiny 4n

where d(y)/R*2r sin y is the Dirac Delta function distribution applied at the pole y = 0
of the rotated geographical coordinate (y,7) and —(3/R*4n) cos y is the axisymmetric
distributed surface traction introducing a resultant cqual and opposite to that of the Delta
function. Such surface traction is applicd to satisfy the overall equilibrium of the complete
sphere. As it was shown for the classical shell theory the participation and form of the
surface traction is a direct result of the particular form of the differential operator in (1).
The component V*+2 of the operator has no homogencous solution that presents singular
behavior at only one point on the unit sphere. However, there exists a generalized Green's
function for the operator V+2, which indeed is singular at only one point, that is the
solution of V*+2 with nonhomogeneous part the expression in (3). The relation between
the two surface coordinate systems (¢, 0) and (7, n), can be viewed through the identity

COS ¥ = COS ¢ cos ¢’ +sin ¢ sin ¢’ cos (0-—-0') C))]
where (¢, 0) represents an arbitrary surface point and (¢’, ") the point where the Delta
function applies (y = 0).

Consider (1) in the form
L[W] = Lylg.} (5)
where
L, =V +p,V+p,V+p,. 6)
We can express operator L, in its equivalent form

L, =(V:"’|)(V2—"’2)(V2—"3) M

provided that r, (i = 1, 2, 3) are the roots of the cubic equation
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rl4parl+pari+pe = 0. (3)

With one real root, r,, and two complex conjugate roots. r. and r;, we express L, in the
form

Ly = (VI+2) [V +v(v+ D]V +i(i+ 1) ©)
where

ry = -2, ‘-F2=V{V+§}w —f§=}€(£+§}.

Obviously v and 4 are complex conjugate parameters.

The component V2 + 2 of the operator L, represents the membrane solution of a loaded
spherical shell. It is interesting to note that for both theories. classical and improved, the
contribution of the membrane solution is somewhat decoupled from the bending solution
which dominates in the vicinity of the pole.

The complete form of (1) can now be expressed as

(VA4 2)[Viv(v4 DIVI+ A4+ D] (x: X))
R . _k(—phD _, )[ 5y 3

where

hd

d
5 4Cot Y —

Vis o )
dy

d};

We express the fundamental solution of the transverse displacement W{x: x} in the
equivalent form

W(x:x') = W (x:x)+ Wi(x; x) (1)

such as
. . , , 1 3
LW, (x; x)] = Ly[d(n—n")], L\ [W,(x;x)] = Lﬂ{“’" R? an cos 3’]~ (12)

After operating onto the right-hand side of the equation governing W we seek the particular
integral of

(V4 2)[Vi4v(v+ D][VE+A{A4+ )] Wa(x: X") = 3Cy cos a3
where
Ch = 3R +)[1 + Co(l + )] c k(=)D
o 4nD YT U ERY

We introduce the function f,(x: x") such as
V+2)/(x:x}y=3Cscos ¥ (14)
which leads to
5H{x;x) = —Co[t+cos y In (I —cos )] {15)

We express B/,(x; X'} in the form
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Wa(x;xX) = A, f,(x; X) (16)
and introduce it into (13) from which we finally obtain

1

= . 7
4= BT _AGGT D=3 (7

Thus, according to (16) we can write
Wix:x)= —T,{l +cos y In (1 —cos y)] (18)

where
T, = ([Re {v(v+1)=2}]*+[Im {v(v+l)--~2}]2)‘l *Ch

We now consider the differential operator which governs W (x; x’) and which we
express in the form

W (x:x") = Lo[U,(x: x")] (19)
provided that the introduced scalar function U (x; x’) satisfics

3(y)

(V4 D)[V+v(v+ DIV + A4+ DIU(x: X) = 57 sin y’

(20

By utilizing the argument according to which the fundamental singularity can only be
singular at only one point over the domain of interest, we retain only those independent
solutions of the homogencous form of (20) that satisfy the above requirement and write
the scalar function U, in the form

U,(x;x’) = A, P, (—cos y)+ AP, (—cos y) @1

where A, and A, are complex conjugate arbitrary constants. The evaluation of the constants
is dictated by the requirement that the particular solution of U, satisfies (20) in the vicinity
of the pole y = 0.

After expressing (20) in the form

3(y)

Vz[(V2+2)[V2 +A().+ l)]U,(X; X’)] = m

=v(v+ DU, (x; x7) @2

we utilize the divergence theorem,

”wf(x x)do faf(" ) g

which can simply be formulated around a circular contour that encloses the pole y = 0. It
is apparent from (23) that only the constant 4, remains in the left-hand side of the
expression, while in the limit as y — 0 the surface integral of the right-hand side is equal to
1. According to the limiting values of the Legendre functions, (22) leads to the evaluation
of 4, and consequently 4,.
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1
Av(r+ D—AA+DIR—v{v+ D] sin vn’

A= A; = CONIG [4.]. (23)

Finally W {x: X") can be written in the form

"

Wi(x:X) = %:[(V’-}— 1=u) = Co(Vi+1—p)*JU,(x; X)) = 2 Re (4,P.(—cos 7)) (24)

where

R:
Ay = (1= =+ D)4 [1 = Cilt—p=v(r+ D])).

The complete expression of the fundamental solution of the displacement function W will
take the form of the sum of the solutions described by (18) and (24). However, in order for
the combined expression to correspond to the Generalized Green's function of the spherical
domain, due to its association with the equilibrating surface traction, the orthogonality
condition

j\j‘ Wiyx:x)cosydo=0 (25)

must be met. The above requirement feads to

Wi = —T[t+cos y In [l ~cos y]+ B cos 7]

B=13~In2. (26)

The remaining auxiliary variables W, A, U and I are evaluated with the help of the system
of equations {A6)-(A10) together with the incorporation of the displucement function W
derived above. We recall that the secondary system of equations was expressed in terms of
the functions W and W and we observe that the auxiliary variable ¥ has no dependence on
the normal surface traction ¢,. For the axisymmetric case the general homogeneous solution
of {2) will take the form

W(x;x") = AL P (cos y) + A%Q (cos y) + B P, (cos 7) + B4Q, (cos 7) 27

where

olw+1) =2 and AY, A%, BY, B

i
&k}
are arbitrury constants. The auxiliary variable A(x; x’) can be deduced from

A(x; X)) = =KXV +2W(x: x) = —k)R—w(w+ DB P.(cos )+ BiQ.(cos 7)].  (28)

The requirement, however, of a single singularity in the domain and the elimination of the
regular solutions from the expressions for ¥ and A yields

W(x:x) = B{P,(—cos y) @9

and
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A(x; X)) = —k[2—aw(w+1)]BY P, (—cos 7). (30)

The incorporation of the final forms of W(x; x’) and A(x; Xx’) into the singular solution
would require the evaluation of the arbitrary constant BY, which in turn would have to
satisfy a requirement set a priori. But the only condition the variable ¥ must satisfy, besides
being a solution of the governing system, is the existence of the Delta function, to which it
apparently has no relation since it is independent of the normal surface traction. We observe,
however, that variables ¥ and A are related to the tangential displacement «,, the rotation
of the normal and consequently to the shearing resultant @,. The axisymmetry of the
solution reasonably requires that when approaching the pole y = 0. the two vectors «, and
B, satisfy

. . dU . . .1 dl .
I/x_x.x(} ", = 5:_{13 [—c—l—/- —W¥R sin y] =0, 3:_[\3 §, = }’ll'% [5’7 —A sin ,»] = (. 30

The general expressions for ‘¥ and A contain a logarithmic singularity and their contribution
to the limiting value of «, and B, vanishes since

lim [sin y'¥] = lim {sin yA] = 0. (32)
=0 r-0

Thus, for the axisymmetric case and without any loss of true representation of the system’s
variables, we can set

Y(x;x)=A(x;x)=0. (33)

With the elimination of W and A from the sccondary system of equations, the remaining
variables U, T are expressed in terms of W and the surface traction g,. Thus we can write

con | K. CkD o, D o
Flx:x) = [RD,V * &b, ' t&D, |V X)
ézksz 2 Rz(l _”Zk‘)
“RDJ(V +i—#)["—z:i;"'—4a 34)

where

Dy = 1+28k,—Sk}(1=p?), Dy = 1+(1+p)¢k,—2(1 - p*)g2%;,
Dy = 1+2u8k, + (u* — k]

We write I'(x ; x") in the form
Fx:x)=T,(x;xY+T.(x;x) (35)

where the subscripts s and r identify the singular and the regular components of I'. The
regular solution I, is to be derived as the dependence of I' onto the equilibrating surface
traction g,, while I, will be associated with the fundamental singular solution of the
transverse displacement W. Execution of the operators leads to:

Fx;x)=2Re (4, P,(—cos 7))+ Ti[l+cosyIn (I —cos )]+ C  cosy  (36)

where
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A
an
]
|
l_ﬁ
“.‘,
L

" [v(v+l)] ~v(v+|) D + 2 ]A

RD
&k} ¢k,D, D,
l‘___ 4 _2 -
T [ RD, ~°RD, +RD,]T'

cr - | SRRA+ WU -pC, | 2kD\~45°k - D,
D}Eh RD} 2
C"=_4ERZ‘ sz_T|B.

Similar procedures to the ones above are used to determine the remaining variable U(x ; x")
which is finally written in the form

U(x; X) = —(ER)T(x; x)+((l—2 k) + [2—1('_:‘§")k“]v=+ l_éﬂzV‘)W(x:x’)

R® k. R* )
- El“lq,d- —-EI_(V +1—wyq, (37

and which, after the exccution of the operations, leads to

U(x;x’) = 2 Re (4, P,(—cos 7)) + T{[l +cos y In (1 -cos P]+CY%cosy (38)

where
AY = -¢RAL‘+(1—2: i{_ﬁ“_ﬁlﬂ v(v +|)+-'~ [v(v+1)]? )
P | e Ut L2 w{__)
TY = éRT.+(I 28k, ~2 iy +4|_#1 T,,

3

= —¢RCT+C, - 'i (1+8k,(1+0IC,:

We obtain the tangential displacement «, by utilizing its relation to the variable U(x; x")
and which yields

d )
u, = a;U(x; x) = =2 Re (4 P! (—cos 7))

L.[cos y sin y

-5 —coc VN iV o
1—cos y sin y In (I —cos /)] Cosiny (39)

and the angular rotation f, from variable [(x; x") such as
d , rpi
B, = a;l‘(x; X)) = —2 Re (4, P,(—cos y))
+ Trl:c-io-i';—s—‘ﬂ;z —sin y In (1 —cos ,)] Msiny (40)

while due to axisymmetry, u, = ff, = 0.
The shear resultant Q, is expressed in the form
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Eh I diW
2(1+p)k, R dy

and consequently, Q, = 0.
The kernel expressions for the stress and moment resultants follow from (Al), (A2).

Eh du,
N, = m[ +pu cot yu, +(,¢K+l)W]

Eh du,

[ ~ nw
N, = A= )R[ —L tcot yu,+(u+1) ]
- ﬁ, . =Dy 95 5
M, = 7!5 —~—+pcotyf, |. M,= E u-—~ +cot 8, (42)
and
Ny=M,=0

We examine the character of the fundamental singularity in the displacement and stress
kernels as y — 0 and evaluate the predictions of the improved theory in the vicinity of the
pole. It is to be expected that the differences between the classical and the improved
treatments of the shell domain are most pronounced near the point of application of the
singular load. .

By calculating the limiting values of the Legendre functions associated with the kernels
as well as of the clementary functions involved we obtain for the transverse displacement
w

lim W= 2[i Re [4, sin vn]-’!}] lin‘} In (sin g)-}-const. 43

yoli

It is apparent that, while the classical theory analysis predicts a finite response of the
transverse displacement W at the point of application of the singular load, according to the
improved theory treatment W is unbounded, experiencing a logarithmic singularity in its
kernel. This finding, however, is in complete agrecment with previous results obtained in
other investigutions concerning both the shatllow and the nonshallow approach of the shell
problem.

A detailed evaluation (numerical) reveals that in the limit as y — 0, the displacement
variables u, and f, identically satisfy

lim i) =0, lim [8,] =0. (44)

As noted earlier the above two conditions together with the equilibrium requirement around
the pole expressed by the integral

70

lim J [Q, cos y+ N; sin yjJRsinydp = — 1| (45)
(1]

constitute a sct of constraints that the fundamental solution must satisfy. It has also been
noted that their interaction with the construction of the fundamental singularity, when set
as a priori, could fcad to an incorrect fundamental solution. The evaluation of the integral
in (45) reveals that the condition is indeed satisfied.

The singularity encountered in the shear resultant kernel Q, is of the order
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. 2Eh 2 . 1
il_{r(l) Q.= W[Re [A,,T—r sin vt ] ]— T,:| 5'1"0 (;) (46)

The character of the singularities in the stress and moment resultant kernels is logarithmic,
same as in the classical theory analysis, and their limiting value can be simply written as

. L i
ixﬂrr(} (N, N, M, M} = !l_.rr(l) [A, In (sm 2)+B,] 47)

where, 4; and B, are constants evaluated between the limiting behavior of the Legendre
functions and the respective constants associated with the Fundamental Solutions.

We should further note that the state of compression in the vicinity of the load point
experienced in the classical theory, 51_{1(} N, = — o0, is no longer predicted by the improved

theory which, in turn, demonstrates that V, approaches + oo. Thus we conclude that, under
the influence of a concentrated load applied along the outward normal. the vicinity of the
pole is in tension. Such a response is expected on the grounds of physical reasoning.

SINGULAR SELF-EQUILIBRATED SOLUTIONS OF A UNIT MOMENT AND A UNIT
TANGENTIAL LOAD

In order to construct singular solutions corresponding to concentrated unit moments
and tangential loads, we utilize the homogeneous solutions of (1) and (2). This implics that
all the components of the external force vector are zero. However, the singularitics of the
general solution of these cquations, encountered in the kernels of the transverse dis-
placement W and the auxiliary function ¥, will be integrated into the solution to yield the
singular states associated with the action of concentrated tuangential loads and moments
applicd in a sclf-equilibrating fashion. The loading conditions, which will be reflected by
the final solutions, are for the case of a moment represented by a pair of unit moments
acting at nt distance apart over the spherical surface and in the opposite sense. For the unit
tangential load case, the solution should reflect the action of two unit tangent loads applied
at two arbitrary points with n distance apart and in opposite directions. The load pair will
be corrected, for equilibrium purposes, by a concentrated moment of strength 2R acting at
the point which will be considered the south pole of the rotated geographical coordinate
system.

The general solution for W and W expressed in the new system (y, ), after taking into
consideration the symmetry about # = 0 in both loading cases, can be written in the form

W(x;x’) = [A,P}(cos y)+ 4,0 (cos y) + B, P} (cos y) + B, P, (—cos y)
+C,P!(cos y)+C,P}(—cos y)) cos n  (48)

and
W(x;x’) = [4}Pl(cosy) + A>0\(cosy) + B\ P.(cosy) + By PL(—cosy)]cosn  (49)

where

| 1 12R¥\ ]2
= — — =—|—' = - —— PRSP S—
wlwtl) =2-gg. ©= -2 2[' 4<2 k.?/f)] ‘

We should note that because of the complex conjugate parameters v and £, the associate
Legendre functions P, and P} are also complex conjugates. The implication of the above
is that, in order for the displacement W to remain a real quantity, the arbitrary constants
B,. B, and C,, C; are complex conjugates, respectively. In addition, since P{(cosy) is a
regular function everywhere in the domain, its contribution to the solution of the singular
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system can be eliminated by setting 4, = A} = 0 without any loss of generality. The above
is justified from the fact that the solutions retained must satisfy the singular stateaty =0
and/oraty = n.

The general expression of the auxiliary variable A(x; x’) can be deduced from (28)
leading to

A(x:x) = C’[BPl(cos y)+ B>PL(—cos 7)] cos n (30)
where C’ = —~k?[2—w(w+ 1)}. The remaining auxiliary variables I" and U can be derived

in terms of W, ¥ and A. Uncoupling of the operators in eqns (A6)-(A10) yields the
expressions for I' and U variables. After the necessary manipulations we can write

’ 2 . 7]
F(x:xX) = [ey+ eV + e, VWX XY+ o5 sin y 5;—;"\(‘; x) 1)
where
f( -: k k » Ty oWy
€1 g;‘i‘x €3 =&—;. N:i. ,-sz&—s, ar = R{g*zgksﬂ—{f—#“)f'kﬂ

ky = =[L+Ek, (14 0) =21 —p*)EkY, ky = — &k, (1 + &k, (2= (1 = pP)k,}]
ky= —&K2, kg =EKPR{+Ek (1 +p)).

Carrying out (51) we obtain for I'(x; x)

F(x;x’) = (3,4,Q1(cos y) +9:[B, P, (cos y) + B, P} (—cos y)]
+3,{C Pl{cos )+ C. Pl —cos 1)+ s C’[sin y wl{w+ D[BL P, (—cos )
— B P, (cos 7))} —cos 7B’ Pi(cos )+ B1PL(—cos M]]) cos 1 (52)

5; = &3 —'..,¢33+4£;?{‘ {52 = ei~—¥{¥+ He;*&*{?(?-&- i}}zf,g,
é; = &y “’}.(}.'f" I}ez'{"{;.(;.“}' f)}ze;;.

Similarly, for the remaining auxiliary variable U(x ; x") we deduce the expression
Ulx;x) = (eéfszi{ms )+t [BiPl(cos y) + By Pl (—cos 1)} + ey[C Pl(cos )
+CyPi(—cos y)]+e{sin 7 w(w+ 1)[B3P,(—¢os y)— B P,(cos y)]

—cos y[B Pl{cos 7)+ BIPL(—~cos }*)}}«— —;Ezf’z siny %Qi) cos 7 (53)

where

¢R-0 —-{éz}k;} + 4¢
P—p° {—pu
v+ 1)E2 - (1 - p¥)k,] + v(v+ DJ*¢
2 bl
l—u | —p

b= —ERS, +1 =23k, —

2

—&RI | +1-2¢k, —

2
ey
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b = CONIG [¢}], ¢ = EResC'+ %C__,. §-

The remaining components of the displacement vector u, and «, are deduced from the
relations

¢ . : . ¢ .
u, = 6—}'0("; X}~ Rsin y¥(x:X). u, =csc ."E} U(x;x’), (54)
while the angular rotations of the normal vector f, and 8, are derived from the expressions
¢ N , G
B, = :-T(x:x")—sin yA(x; x’). B, =cscy—T(x;x). (55)
cy on
Substitution of the auxiliary variables into (54) leads to
| d | 2
u, = sUAZE/—Q, +2 Re [¢Z{v(v+ 1)[B,P,(—~cos y) — B, P,(cos )]
—cot y[8, P, (cos y) + B,P(—cos ]}]

€9
sin y

[B,\P)(cos )+ B, Pl (—cos 7))

+ [eaw(w+ 1) = R] sin y[B, PL(cos y) + B2 P.(~cos )]

RAY . & d | . .
-5 [sm Y dy Qilcos y)+cos y & Qi (cos y)+2 sin yQ,(cos y)D cos i (56)
and
u, = —cse yU(y) sin g
U(x;x’y = Uly) cos . 57

Similarly for the angular rotations we derive the expressions

d
B, = E,Aza;Qf(cos 7)+2 Re [0, {v(v+ 1)[B,P,(~cos y)— B, P,(cos })]

—cot 7 [B,P)(cos y)+ B, Pl{—cos )]}

+C’[S;‘5Y —{l+w(w+1)} sin y][B’. Pl(cos y)+ B3PL(—cos y)] (58)

and
B, = —cs¢ yI(y) sin n
(x;x’) = [(y) cos 1. (59

Substitution of the displacement and angular rotation vector components into eqns
(A1), (A2), (A3), will yield the expressions for the stress, moment and shearing stress
resultants. Thus, with these last manipulations we have arrived at a general solution state
of a complete sphere experiencing the effect of singularities at both of its poles (7 = 0 and
y = r). The character and the physical interpretation of the singularities in the kernel
functions of the dependent field variables will be examined with the introduction of a
limiting contour in the vicinity of the poles. This procedure will provide us a clear view as
to what physical system the singularities relate to or further, to what system they could
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Fig. 1. Self-equilibrated moment pair.

relate to if additional limiting constraints are imposed onto the general solution of the
system. The singularities will be evaluated in the form of two integrals given by (60) and
(61). In these equilibrium around the two poles is implemented in the forms of a resultant
tangent force and a resultant moment.

F.= !Iim(l J (¥, cos y+ @, sin y) cos n— N, sin n]R sin y dn (60)
- (1]

7

-

-
M, = iin(t’f R[M, cos n— M, cos y sin n— R sin y cos n[Q, cos y—N, sin y]] sin y dn.
- (1]

| At

(61)

In the two sections that follow, the construction of the singular solution states cor-
responding to the action of (a) a unit concentrated moment, and (b) a concentrated unit
tangential force, will be formulated by utilizing the same general singular solution by being
subjected to appropriate limiting conditions for cach of the two cases.

Concentrated unit moment solution

We consider the self-equilibrated singular moment state shown in Fig. 1. The physical
conditions nceded to be imposed onto the general solution for the evaluation of the arbitrary
constants are expressed in the form of the following mathematical statements:

W(y) = W(n—y) (62a)
gimu [Wcosy—u, siny+RsinyB,JRsinycosnpdnp=10 (62b)
7:“ 0

lin‘l,J.- [W sin y+u. cos y+u,]Rsinycos ndy =0 {62c)
(a0
lim f 8, cos n+sec v, sin n]R sin y dn = 0. (62d)
—=rJo

y--n

The first of the conditions, (62a), implies symmetric transverse displacement W with respect
to y = n/2, while through (62b) we require that the net normal displacement in the vicinity
of the poles vanishes due to the fact that no net forces act along that direction. Further,
the tangential displacement component in the direction of 5 = + /2 should also vanish, as
stated by (62c), as the two poles are approached due to the character of the applied load.
With the same physical reasoning, the net angular rotation of the normal in the direction
of n = /2 is required to vanish. This is expressed in the form of the limiting integral in
(62d). In addition to relations (62) and according to (61), the net resultant moment in the
direction of n = 0 of the internal stresses around a limiting contour, must balance the
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external couple applied at each pole. It is apparent that enough mathematical relations
have been generated in order to evaluate the arbitrary constants of the singular solution.
The first of the requirements leads to the condition

AT =0, (63a)

while evaluation of the limiting integrals in (62b-d). by incorporating the singular behavior
of the Legendre functions, leads to the following system of equations.

s()BT+s(A)CT =0 (63b)

eis(V) BT+ e S(A)CT + eos(w)(BY)™ + ; (A)" =0 (63c)
3:5() BT +8,5(H)CT - e(CV's(w)(B3)" = 0 (63d)
s(VBT+s(ACT =0 {63e)

ep5(V) BT + e{s(A)CY — eos(@)(B1)" + g (A)" =0 (630)
3:5( BT +0:5(AHCT + s (CY"s(@)(87)" =0 (63g)

where the superseript a1 on the constants denotes their affiliation with the moment solution
while s(v) = (2/n) sin vr ctc.

The moment requirements, evaluated around y = 0, provide the following additional
relation between the arbitrary constants.

1
0, T(M BT +6,T(4) "5'+C'[¢-5T(m)+ ’-;j‘-\‘(w)](ﬂ'z)'" == ;l-D— (64)

where T(v) = v(v+ 1)(2/n) sin vr,
Although the sume integral must be evaluated at y = n, the requirement W(y) =
W(n—7y) implics that

Bl;l = ’i’q Clln = Clil (65)

and consequently no additional relation need be incorporated. However, when such an
integral is formed, the moment condition at y = x is identically satisfied.

The system of equations generated is suflicient and so, when solved, the arbitrary
constants are evaluated. Their particular values reflect the solution of the physical system
described in Fig. 1. The symmetry of the system about y = /2 also yields the following
relation.

(B7)" = —(BY)". (66)

Concentrated unit tangential load solution

By utilizing the same general solution and using the same physical requirements, (62b-
d). used in the construction of the moment solution, except for (62a), we arrive at the
following set of equations between the constants

AS+s()BY+s(A)CH =0 (67a)
A —s() B\ —5(A)C, =0 (67b)

) , o Ry
ety + els( By + eis(A)Clh+ Ps(@)(B2) + 5 (4 =0 (67c)
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Fig. 2. Sphere in equilibrium.

— AL+ 35V B + 2 s(A)Ch — (w)(BY) + g (4 =0 (67d)
81 A +0:5() B +0,5(A)Clh— e5sC” s(w)(BY) = 0 (67¢)
0,4 —8:5(v)BY ~3,5(A)C — &5C's(w)(BY) = 0. (670)

Evaluation of the force resultant, through (60), around the pole y = 0 leads to the
relation
1+ :
2

1—pu
Ehn -~

(68)

: . e BB
2el Al S T()BY +¢-:,T(A)Cs—[«.,nw)- £ RS((U)](Bz)""‘ By = -

It is apparent that one additional condition is needed in order for the system of equations
to become complete. However, our desired system must incorporate two additional singular
cffects, such as a resultant force # == | with direction opposite to the one already considered
at y = 0, and a resultant moment M = 2R, both applied at y = n. By using the complete
sphere, we suspect that overall equilibrium could be satisficd by the solution itself. Thus we
proceed by caleulating the moment integral at y = 0 and letting it correspond to a resultant
moment of intensity M = R with direction similar to the one in Fig. 2. Such a condition
leads to the relation

T

Ehr ~ (69)

. . I
2(5,.4'3-{—()37‘(1')8'3+63T().)C’:—C"jcs'f(w)+ —;—-Em{w)]{l};)‘ = -

The system of cight equations is solved in terms of the arbitrary constants and subsequently
the two integrals, the resultant force and the resultant moment, at y = n are evaluated. The
above test indeed proves that the singular solution derived, in satisfaction of the choice of
limiting conditions, describes the physical system of Fig. 2. We further note that a moment
solution nceds to be superimposed onto the system just derived in order to achieve the
solution state of Fig. 3. However, since such a moment solution has already been derived
in the form of a sclt-equilibrated pair of unit moments, the superposition approach requires

Fat M-2R

Fig. 3. A unit lateral force equilibrated by a similar force and a moment.
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no additional formulation. Thus the kernel functions associated with a unit tangential load
applied at an arbitrary point x’(¢",8°). or else in the introduced rotated system (y,n) at
y = 0 and directed along 7 = 0, will be of the form

WTh(x;x') = W'(x;xX)+RW™(x:X)
up(x:x") = ufy(x: X))+ R (x; X')

NI(x:x") = Nj(x: X))+ RNZ(x: X)) (70)

etc. In (70) kernel functions with superscript T (W7, M| etc.) refer to the singular solutions
associated with a unit tangential load. These solutions were constructed from the kernels
which resulted from the general solution by utilizing the arbitrary constants with superscript
t (B4, A% etc) and the moment kernels multiplied by R necessary to eliminate the effect of
the concentrated moment of intensity R, at y = 0, accompanying the solution of Fig. 2.
With these last manipulations we have arrived at the complete set of singular solutions for
all three types of concentrated loads applied on the middle surface of a closed sphere by
incorporating into their expressions the effect of transverse shear deformation.

Since the differences between the classical and the improved theories are expected to
occur in the vicinity of the point of application of the singular load, we evaluate the behavior
of the dependent variables associated with the last two types of loading in the limit as y —
0. The character of the singularitics experienced by the dependent variables as 7 — 0, is the
same for both moment and tangential load solutions. In terms of the displacement vector
components we observe similar characteristics to those of the classical theory analysis.
Thus, the transverse displacement W vanishes as we approach the point of application,
1i1.1(1' W = 0, whilc both tangential displacement components, u, and ,, arc unbounded as a
result of logarithmic singularitics in their kernels, The same is true for the angular dis-
placements f#, and f§, which also present logarithmic behavior in the pole vicinity.

The stress and moment resultant components also match the behavior of their counter-
parts in the classical analysis. All six components present singularitics of order (1/y) and
some of their limiting values are recorded below.

Eh R
imAN” = A"+ (1 =2 Re {2 BT T(MRCP (v) — !
lim N (I_“:)R<(l+y),(/1,) +(1=p)[2 Re {2 BITORCP (v) = CPy(W)]}]

+2 Re [«i BT+ (1 = ) [0 (B2)" T(@)[2CP (w) = CPy ()]

— pfeg(w+ I)—R]s(w)(B':)'"> h.'.Tl} (I)

7

limM™ = %((1 —w[2 Re {8,BTTMRCP,(v) = CPy(M]}] +2 Re [3,B2T(v)]

y—0

—(1=p)[e5sC (BY)" T()[2CP, (w) — CPy(w)]]

1
+uC' [esw(w+ 1)+ l].s-(w)wg)m) m (/) an
where
CP,(v) =¢(v+ 1)+ C+ : cot vi—in 2

CP,(v) =[rcot vi+y(v+2)+y(v)+2C—1—In 2)/4
C = Euler's constant

¥(...) = logarithmic derivative of Gamma function.

Similar expressions would result for the respective resultant components of the tangential
load solution. Their difference with the above expressions will be the participation of the
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additional constant A4, which in the general solution accompanies the independent solution
Q1(cos 7).

The most pronounced difference between the two theories, however, was observed in
the character of the singularity in the shear stress resultants Q, and Q,. It was found, in the
classical theory approach, that these resultants demonstrate a very strong singular behavior
of order 1/7°. In the improved theory. however, the singularity involved with the above
kernels is simply logarithmic. We record below the limiting value of the shear resultant of
the unit moment solution.

Ei
limQ, = ——

M Q; = 5 ok ang [A% cos 7 In (1 —cos )+ A% In (1 ~cos y) + AY cos y+ AF)]

(72)

where
i
AY = — 4—Hf,(:"w(m-i- 8"
3 5 ! : ’ E
A9 = —1Re {[ 62+ 2 [TMIBT (=~ esC o0+ 1)(BY)"
A = — ;,csC'(B’z)"'w(w‘*' HEP(w)
1 l
A9 = —2 Re {[52+ -R]T(v)Cl’.(V)B'E'}*' ~esC" CPo(@)w(w+1)(87)"

while a similar expression results for the limiting value of Q,.

Further, we should note that the character and strength of the singularities in all
the dependent variable kernels agrees with the singular behavior previously obtained by
Wilkinson and Kalnins ([966a, b). The weakness of the singularity in the shear resultants
is expected to have great impact in the evaluation of physical problems where integration
of the kernels over singular points is vital to the analysis.

NUMERICAL RESULTS AND DISCUSSION

The analytical solution of this paper that resulted in closed form expressions for the
dependent variables of the spherical shell problem, served two purposes. First it made
possible an explicit representation of the behavior of the shell in the vicinity of the point of
application of singular surface loads. The effect of the shear deformation was reflected in
the shell response after comparative evaluation was performed against the classical theory
solution. Second, it provided formulae for the displacement and stress variables suitable
for numerical calculations with the use of integral equations.

We focus our attention on the bending region which extends to some distance around
the point of application of the singular load. We expect that the shell response characteristics
will clearly demonstrate the effect of the shear deformability which is present only in the
improved theory analysis. For that purpose a spherical shell with a ratio of thickness & to
the radius R, #/R = 1/20 is considered. In the process of studying the effect of shear
deformability greater ratios of & to R were considered. It has been observed that the
diffcrences occurring in the different field variables (such as displacements and stress
resultants) increase as the shell gets thicker. However, because both theories have been
formulated upon the assumption that the shell is “*thin™, conclusions that are solely based
upon the shell thickness could be misleading and inaccurate. Although results obtained
through the 3-D finite element model validated the effect of the transverse shear, as captured

SAS I5:12-8
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Fig. 4. Stress resultant produced by an outward going unit point load. Classical and Improved
theory comparison.

by the improved theory, are left out simply because of the fully analytical character of the
present solution.

Results in the bending region are presented for a normal concentrated load, a tangential
load and a concentrated moment. In the first case (sce Fig. 4) our analysis demonstrates
the striking difference between the two theories in the stress resultant around the point of
application of & unit point foad acting in the outward direction. The classical theory predicts
that the point loud vicinity is in a state of compression while the improved theory implies
that the region is in tension. While both theories have the same order of singularity in the
corresponding kernels, logarithmic, the discrepancy is the result of the mathematical model
that the classical theory is based on. Such model requires that the normals remain normals
after deformation and for such an assumption to be satisfied compressive forces have to
act in the vicinity of the point load. Similar results are presented for a thicker shell,
A/R = 1/10, and it is apparcnt that the bending region cxtends further as a result of the
shear deformability.

2. 58+
E = 30 x 106 pai
u = 0.3
R =10 in.
o0\
.
= \"‘
-
} L3 \\
. -
P T
. . —
t .......... . " ———
g 1. 80~ Class. " ™esemel . u
- '
8. 50
8. 82
[

5 - degrees

Fig. S(a). Displacement solution resulted by the action of a unit tangential load. Classical and
Improved theory comparison.
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Fig. 5(b). Stress resultants due to the action of a unit tangential load.
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Fig. 6. Displacement solution in the vicinity of a concentrated unit moment. Classical and Improved
theory comparison.

Next we look at the state of deformation and stress in the bending region of a shell
acted upon by a unit tangential load. While the singular character of the associated kernels
of both theories are of the same order the effect of the transverse shear is evident. In Fig.
5(a) we present the shell deformation which suggests that the bending region extends further
than in the case of a normally applied load. It is also interesting to note that the shell
deformation seems to be more sensitive to the shear deformability than the stress resultants,
shown in Fig. 5(b), at some distance from the applied load. Finally the deformation of the
vicinity of a concentrated moment is presented in Fig. 6. We should also note that while
the membrane-inextensional solution, which comes about from the operator V2+2, is the
same for both approaches, the differences arise in the rapidly varying parts of the solutions
which are expressed in the forms of the Legendre functions.

On a final note, when the singular solutions that have been obtained in closed form
are utilized in boundary integral approaches to solve shell problems with boundaries,
noticable discrepancies will arise over boundaries with free edge conditions as well as in
their vicinity. That is in account of only four boundary conditions that the classical theory
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incorporates, using the effective Kirchhoff resultants. while the improved analysis allows
five independent constraints along the shell boundary.
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APPENDIX A

The various stress resultants of the shell clement in the (4, 0) surface coordinates are expressed in terms of
the surface displacement and the angular displacement vectors:

En  [éu,
= e | o L W LW
N, G=aOR | % + +u(u,, ot ¢ +cse ¢ + )]

e [
Ny =B L (‘ L W)+u,, cot presc 44 W]

(=uHR| "\ 0 ’”
Eh  [ou,
Mo = 5w mik| P "”’ “W! dm"] *n

pfop, (B,
M, = R -——04, Ty eS¢ p+cot ¢ff,
_ D [ ‘ﬂo /0
M, = Ry + 5 osc p+cot B, ]

- o, i
L ’l’;’o[zfj + ‘L ese ¢—fl, cot ¢] (A2)

Eh 1 2w
O = 5y ke [ﬂﬁ R '5.;]

Lh 1 oW
& = 3k [l R ¢ ?{T]‘ (A3)

Prasad’s (1964) auxiliary variables relate to the displacement vectors according to the expressions

Y

au ¢U
o —-R‘P‘ sin i,y = o

ty = 7 B cse @ (A4)

ar . ér
s = % —A_ sing, fl,= ET csc . (A5)
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Secondary system of equations
' . | B X
(v-+1-mcw[( ,ﬂ)F‘ERsm dw‘.“i’kcos¢]+(I«+«u+£)W+§rw0 (A6)
€F+3W+§&=& {AT)
N J_ LT oA " W

[V +1l-u c_kv]r [—-—5 Ed’smdz«i—../\coscb ERk,_o (AR)

. {
?’*5-2“‘*:'-; A=0 A%

N

RV (L4 )k VU + V3 ~ 2L 4 )k 15— R(Z! £o§ ¢ +sin @ %)[/\ =14k P+ QW”"‘;;)R“

kq,=0.
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